

Mulching of harvest residue after clearfelling in Eucalyptus and Pine stands; a comparison of productivity, CO2 emissions, costs and its influence on downstream operations.

by Leeshan Mahadeo

Presentation overview

- I. Introduction
- 2. Study aim
- 3. Mulching productivities
- 4. CO₂ emissions
- 5. Costs
- 6. Planting and pitting productivities
- 7. Conclusions

Introduction

"Mulching is the application of an organic layer over the soil surface" (Bautista et al., 2009)

Mulching offers a solution for the comminution of residues almost immediately after harvesting.

Benefits

- I. Reducing period between successive rotations
- 2. Reduced fire risk
- 3. Improve long term soil health

Study aim

The aim of this study was to quantify the **productivity rates**, **CO**² **emissions**, and **costs** between eucalyptus and pine plantations. In addition, analyzing the **influence** that **residue management** has on **pitting** and **planting productivities**.

- I. Time studies
- 2. Biomass assessments
- 3. Monitoring fuel consumption

Research site

Sites description

Site	Stand size (ha)	Previous species	Machine		
	Eucalyptus				
S1	19.18	E. GxU	CAT		
S2	18.45	E. GxU	CAT		
Pine					
S3	26.11	P. pat	Tigercat		
S4	16.07	P. pat	Tigercat		

Mulcher specification

	CAT 586c	Tigercat M726G
Engine Power (kW)	261	275
Revolutions per min (rpm)	1880	1800
Fuel capacity (L)	494	570
Weight (Kg)	17 214	13 560
Attachment	FAE 300U	TC 4061
Working width (mm)	2544	2440
Weight (kg)	4 010	3 970
No. teeth	58	50

Biomass assessment

Site	Stump volume (m³∙ha⁻¹)	Residue volume (m³∙ha⁻¹)	Mean residue diameter (cm)	Stump + residue volume (m ³ ·ha ⁻¹)
		Eucalyptus		
S1	24.7	35.9	7.9 ±2.3	60.6
S2	20.3	16.1	5.7 ±2.1	36.4
Mean	22.5	26.0		48.5
		Pine 🚽		
S3	22.6	78.1	7.0 ±4.3	100.7
S4	22.3	103.8	8.5 ±4.5	125.1
Mean	44.9	90.6		112.9

Before

Mulcher productivity

Site	ha∙hr ⁻¹	hr∙ha ⁻¹	Min·100m ⁻¹
	Ευα	calyptus	
S1	0.40	2.62	3.89
S2	0.35	2.91	4.39
Mean	0.38	2.78	4.13
		Pire	
S3	0.31	3.19	4.49
S4	0.39	2.60	3.63
Mean	0.35	2.90	4.06

Comments on productivities

- The mulcher achieved similar productivities (0.35 and 0.38 ha hr⁻¹) in both treatments – even though the initial biomass volumes were lower in Eucalyptus (48.5 m³·ha⁻¹) compared to Pine (112.9 m³·ha⁻¹)
- This indicates that the mulchers are not hindered by the biomass volumes and has adequate mechanical capacity for the task.

CO₂ Emissions

	Eucalyptus (CAT)	Pine (Tigercat)
Engine power (Kw)	261	275
Fuel consumption (l/hr)	32	34
Fuel consumption (I/ha)	89.0	98.6
CO2 emissions (KgCO2/diesel liter)	2.7	2.7
CO2 emissions (KgCO2/ha)	240.2	266.2

Costs in ZAR

	Eucalyptus (CAT)	Pine (Tigercat)
Machine Cost	R 6 000 000	R 6 450 000
Machine cost (R/hr)	R 2 050	R 2 144
Machine cost (R/ha)	R 5 393	R 6 126

(Ackerman et al., 2014)

Summary

	Eucalyptus	Pine
Productivity (ha/hr)	0.38	0.35
Productivity (hr/ha)	2.78	2.90
CO2 emissions (KgCO2/ha)	240.20	266.20
Machine cost (R/ha)	R 5 393.00	R 6 126.00

Discussion

- Mulching productivities between eucalyptus and pine stand did not differ significantly.
- A 26 Kg CO₂/ha difference in emission between eucalyptus and pine stand
- The mulching cost on both eucalyptus and pine stand are comparable.
- Even though Pine mulching cost R 733.00 more per a hectare compared to eucalyptus mulching, this difference in cost is directedly related to
 - Machine Fuel consumption
 - Machine purchase price
 - And not species difference

Productivity results of downstream operations

01 July 2020

Pitting productivity

Site	ha∙hr ⁻¹	hr∙ha ⁻¹	Percentage difference
	Eucalyptus	mechanised)	
Mulched	0.27	3.85	15%
Burnt	0.25	4.44	
Pine (manual per person hour)			
Mulched	0.05	17.54	
Burnt	0.06	15.87	10%

Planting productivity

Site	ha∙hr ⁻¹	hr∙ha ⁻¹	Percentage difference
E	Eucalyptus (se	mi-mechanise	d)
Mulched	1.66	0.63	50%
Burnt	1.15	4.44	
Pine (manual per person hour)			
Mulched	0.08	12.29	40%
Burnt	0.06	17.19	

Results

- A higher productivity rate was observed for <u>pitting</u> **after mulching**, than for pitting after burning on the Eucalyptus site (mechanised pitting)
- A higher productivity rate was observed for <u>pitting</u> **after burning**, than pitting after mulching on the Pine site (manual pitting)
- As expected, both semi-mechanised and manual <u>planting</u> productivity **after mulching** was higher than on burnt sites (fewer impediments)

Discussion and Conclusion

- Manual <u>pitting</u> is slightly quicker on burnt sites than on mulched sites
- Both semi-mechanised and manual <u>planting</u> were quicker on mulched sites
- Incomplete combustion of larger material negatively impacts <u>movement</u> (machine and person) - windrowing might help
- Overall, <u>mulching</u> combined with mechanised pitting and semi-mechanised planting yields the <u>highest productivity</u>.

Thank you | Dankie | Enkosi

Acknowledgments

- Funders:
 - York Timber
 - Sappi

- Supervisors
 - Prof Bruce Talbot
 - Mr Simon Ackerman
- Contractor
 - Savithi Group
 - Mr Deon Redinger

For more information contact us at <u>bruce@sun.ac.za</u> or <u>18447015@sun.ac.za</u>

